Mean field variational Bayesian inference for nonparametric regression with measurement error
نویسندگان
چکیده
A fast mean field variational Bayes (MFVB) approach to nonparametric regression when the predictors are subject to classical measurement error is investigated. It is shown that the use of such technology to the measurement error setting achieves reasonable accuracy. In tandem with the methodological development, a customized Markov chain Monte Carlo method is developed to facilitate the evaluation of accuracy of the MFVB method.
منابع مشابه
Beta Process Non-negative Matrix Factorization with Stochastic Structured Mean-Field Variational Inference
Beta process is the standard nonparametric Bayesian prior for latent factor model. In this paper, we derive a structured mean-field variational inference algorithm for a beta process non-negative matrix factorization (NMF) model with Poisson likelihood. Unlike the linear Gaussian model, which is well-studied in the nonparametric Bayesian literature, NMF model with beta process prior does not en...
متن کاملVariational Inference for Nonparametric Bayesian Quantile Regression
Quantile regression deals with the problem of computing robust estimators when the conditional mean and standard deviation of the predicted function are inadequate to capture its variability. The technique has an extensive list of applications, including health sciences, ecology and finance. In this work we present a nonparametric method of inferring quantiles and derive a novel Variational Bay...
متن کاملVariational inference in nonconjugate models
Mean-field variational methods are widely used for approximate posterior inference in many probabilistic models. In a typical application, mean-field methods approximately compute the posterior with a coordinate-ascent optimization algorithm. When the model is conditionally conjugate, the coordinate updates are easily derived and in closed form. However, many models of interest—like the correla...
متن کاملModel-based approaches to nonparametric Bayesian quantile regression
In several regression applications, a different structural relationship might be anticipated for the higher or lower responses than the average responses. In such cases, quantile regression analysis can uncover important features that would likely be overlooked by mean regression. We develop two distinct Bayesian approaches to fully nonparametric model-based quantile regression. The first appro...
متن کاملBayesian Nonparametric Modeling in Quantile Regression
We propose Bayesian nonparametric methodology for quantile regression modeling. In particular, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed nonparametric prior probability models allow the data to drive the shape of the error density and thus provide more reliable predictive inference than models based on par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 68 شماره
صفحات -
تاریخ انتشار 2013